Information Theoretic Prototype Selection for Unattributed Graphs

نویسندگان

  • Lin Han
  • Luca Rossi
  • Andrea Torsello
  • Richard C. Wilson
  • Edwin R. Hancock
چکیده

In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information theoretic graph kernels

This thesis addresses the problems that arise in state-of-the-art structural learning methods for (hyper)graph classification or clustering, particularly focusing on developing novel information theoretic kernels for graphs. To this end, we commence in Chapter 3 by defining a family of Jensen-Shannon diffusion kernels, i.e., the information theoretic kernels, for (un)attributed graphs. We show ...

متن کامل

A Graph Embedding Method Using the Jensen-Shannon Divergence

Riesen and Bunke recently proposed a novel dissimilarity based approach for embedding graphs into a vector space. One drawback of their approach is the computational cost graph edit operations required to compute the dissimilarity for graphs. In this paper we explore whether the Jensen-Shannon divergence can be used as a means of computing a fast similarity measure between a pair of graphs. We ...

متن کامل

A quantum Jensen-Shannon graph kernel for unattributed graphs

In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen–Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated wit...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012